The Magnificent, Mysterious, Wild, Connected and Interconnected Brain

Our brain is like a wild, raging electrical storm that wondrously enables us to make our way. Yet a lot of mindfulness literature makes it sound like a very simple machine. Two leading neuroscientists suggest better ways to think and talk about the brain and the mind.

Illustrations by Aaron Piland

For some time at Mindful we’ve been concerned that discussions of the brain—particularly in the context of mindfulness and meditation—have become simplified to the point of distorting the truth. They often present the brain as a set of building blocks or Lincoln Logs, each with its own function. The goal of meditation in this model is to strengthen certain parts and suppress others. When we asked neuroscientists doing actual research about these notions, the answer ranged from “that’s very, very simplistic” to “that’s nonsense.”

We are in the middle of an epidemic spread of BS about the brain. Something new comes up just about every week that grossly oversimplifies both what science currently knows about the brain and how the brain might actually work. Trainers and coaches and keynote speakers frequently make extravagant claims about “brain change,” “growing the brain,” or “adding gray matter.” Forbes recently published “6 Brain-Based Leadership Game-Changers for 2018,” by an author who writes about “leveraging neuroscience to create remarkable leadership.” The first diagram illustrates the reptilian brain, the mammalian brain, and the supposed newest part of the brain, the neocortex, where “meaning is made.” A quick internet search will let you know that this hypothesis, known as the Triune Brain, “is no longer espoused by the majority of comparative neuroscientists in the post-2000 era.” It’s been debunked for almost two decades.

A newsstand publication called Mindfulness Made Simple contains a two-page spread on “How Mindfulness Physically Changes Your Brain” that points to mindfulness causing growth in the presumed good parts of the brain and shrinkage in the bad parts. It takes some preliminary research out of all context and states it pretty much as fact. Any honest neuroscientist will tell you that we simply do not know this much about how the brain is affected by mindfulness, since we don’t even have a single definition of what mindfulness means. And what we feel we know today will be eclipsed by findings after our lifetime. Humbleness is the watchword when it comes to assertions about how the brain and the mind work.

A book from a major publisher sells itself as “Mind-Hacker’s Guide to Shifting into Brain 3.0.” It promises that you can use science to rewire your brain. Among its claims: You can “overcome PTSD without medication by strengthening neural circuits in Brain 3.0, making your emotional immune system stronger.”

Let’s be clear. This is not science. It is snake oil.

The problem, scientists and science educators point out, is not that people are being coached and coaxed to “use their brains better.” The problem is using pseudo-science as evidence for the effectiveness of
a practice or to present outmoded models of the brain and mental experience. These models are often taught to children in school, who go home and tell mommy and daddy that the amygdala is bad and the prefrontal cortex is good. Is it fair to reduce something so wondrous as the brain to a couple of parts—even if this mythology helps children to notice their reactivity and calm down?

To delve into the state of the brain science surrounding meditation, we invited two neuroscientists to join in conversation with Mindful about how to effectively talk about the brain when presenting mindfulness and meditation.

Amishi Jha, PhD, is associate professor of psychology and the founder and head of the Jha Lab at the University of Miami. Her pioneering work, much of it funded by the Department of Defense and carried out with the military, students, and athletes, shows how mindfulness can protect attention and working memory. The lab is also working on how to scale up mindfulness for larger populations and make its effects long-lasting. She is working to find accessible training that can be broadly adopted by high-performance and high-demand groups, including first responders, police, and fire fighters.

Cliff Saron, PhD, is a researcher at the Center for Mind and Brain and director of the Saron Lab at the University of California, Davis. He is known for directing the Shamatha Project, a multiyear investigation of long-term intensive meditation. Findings so far indicate that the practice sharpens and sustains attention, enhances well-being and empathy, and improves physiological markers of health. Saron is interested in not just what the brain is doing when attending to a task, but what’s happening on a moment-by-moment basis as we construct reality.

While Saron and Jha are separated by a continent and different research goals, they see eye-to-eye on the need to be cautious in making assertions about long-term alterations to the brain. They collaborated with a few others on an important paper that provided a preliminary model for distinguishing a variety of mental factors involved in a range of meditation practices.

Our several conversations lasted many hours and ranged far and wide. Here are some of the highlights of our exploration of brain and mind.

Barry Boyce: Many mindfulness teachers like to use a model of the brain that pits the so-called emotional center deep inside the brain, the amgydala, against the reasoning center of the brain up front, the prefrontal cortex, which carries out our “executive function.” In the battle between these two, mindfulness is on the side of the executive function, coming in to help when the amygdala is out of control. How do you feel about this characterization?

Amishi Jha: I understand the good intentions of smart and kind-hearted people when they use overly simple models of the brain in an attempt to make brain functions broadly accessible, even to small children. They’re trying to help people understand something about problems they’re encountering with their emotions or their attention. I’m trying to do the same thing when I work with first responders or soldiers. No one wants to make costly mistakes.

However, we can do better than using a misleading model that implies that a part of the brain, the amygdala, misbehaves or “goes bad,” causing us to freak out, and that to control this reactivity—fear, anxiety, inappropriate behavior—we need to use the “good” part of the brain up front that comes in and tamps down the bad guy.

Cliff Saron: The “good brain, bad brain” idea gets things off on the wrong foot completely. You can err on the side of complexity or simplicity. If you’re trying to simplify things, you want to do it in such a way that you’re still on the side of accuracy. Amishi is exemplary at getting to the essence while still being truthful, using a model that scales up to something that represents a better understanding. Locating all emotion in the amgydala belies what we know about the powerful interconnectedness of the brain. Pictures of the anatomical connections of the amygdala to other parts of the brain, even from 25 years ago, show an incredibly dense level of interconnectivity with almost all parts of the cortex. Huge amounts of the brain are involved in even the simplest of tasks.

Barry Boyce: These models are meant to provide children with a way to think about emotionality as a natural brain process—to help them depersonalize it and and calm and composure. Is it such a problem if it’s a cartoon-like oversimplification?

Jha: It’s an open question whether using a model of brain function actually helps them calm down. These kinds of models are not limited to presentations to children. I’ve heard Mindfulness-Based Stress Reduction teachers talk about the reptilian brain needing to be overcome by the modern-day frontal lobes. That’s the “triune brain hypothesis”—a 1960s era story of a battle between the older and newer brain not widely accepted in neuroscience today. It’s not part of the curriculum for MBSR, but it’s a kind of freelancing that people do.

We don’t really have any evidence that you would get any less benefit if you didn’t use a model of the brain in teaching people meditation. Why mislead if you don’t need to? The modular view of the brain—with a specific function separately housed within a particular chunk of the cortex—is like a holdover from phrenology, when people thought brain functions were tied to bumps on the skull—a bumpy forehead meant someone was more intelligent. We can do better than this.

Barry Boyce: Why does it matter if we’re using notions of the brain that make it easier for us to understand what this thing inside of us is doing?

Saron: As someone who tries to think and teach carefully about the brain, one of the things I grapple with is the difference between feeling like you understand something and having the experience that something is beyond one’s grasp. Fully understanding the human brain falls into the latter category. To think otherwise is a caricature of what neuroscience is about.

I’ve developed a six-day workshop called “The Buddha, the Brain, and Bach” with senior meditation teacher Sylvia Boorstein and my wife, Barbara Bogatin, a cellist with the San Francisco Symphony. We explore the intersection of contemplative practice, neuroscience, and musical creativity. We touch upon fundamentals of brain structure and function as well as complex dynamical aspects. It’s a curriculum designed to use the deep awareness cultivated in contemplative practice to foster a sense of knowing and wonder, showing that it doesn’t make sense to rely on narratives that tie things up neatly.

Jha: I agree with that, but in my work I also find it helpful to orient people to what’s happening with their attention when they get off task and bad things result. Naturally, one of the first things we think of in trying to keep something simple is how would you explain that to a child?

Coincidentally, that occurred for me with my daughter. She was seven at the time. She jumped up on my lap while I was working on my computer. She ended up picking up a model brain I had sitting around. Not surprisingly she took the whole thing apart. She lifted up one piece after another and asked, “What does this do?”

With the occipital lobe, I said something like “it helps you to see”; for the temporal lobe, it helps you hear; for the cerebellum, it helps you coordinate what’s coming from all your senses, and so on. I was just giving her simple answers, because I was trying to work. At some point, though, I said, “No, let’s not do it this way. Let’s talk about how this actually happens.”

Then, I talked to her about how all of these parts never work alone. They always work together, but they work in specific ways together. As an analogy, I asked her to think about what body parts she would use to do a cartwheel. She said, “I need my hand, and that’s connected to my arm, and that’s connected to the rest of my body.” As I coaxed her through this investigation, she realized she needed all those parts and more, and she needed them to move together in a pattern that results in a cartwheel.

That’s a pretty good way to think about how the brain works. All of these different parts talk to each other and they need to act together for us to accomplish something we’re trying to do. She seemed to get that you can’t just think of the parts in isolation; you always have to think of how they work together with other parts and with the whole. So I think you can be simple and accessible and also correct, without introducing a lot of distortion.

Barry Boyce: I appreciate that, since science is supposed to be an honest exploration of what’s going on, not simply a way to find easy explanations for things that are hard to understand. In that regard, let’s talk about “executive function.”

As discussed above, strengthening this function—the inhibition, problem solving, decision making, reasoning activities identified as the work of the “upper brain,” the central lobes—is an attribute often ascribed to mindfulness. Is that a fully accurate story?

Jha: You get into trouble when you imply that what some people call the “upstairs brain”—referring to executive function—does all this beneficial regulating and balancing. Treating the frontal lobes almost like a character in a story—the good guy, the white knight—can lead to the view that everything that flows from strong executive control is beneficial. The reality is that someone with high working memory capacity and very good executive control could do some very bad things. Just because a particular brain network can do “good things” doesn’t mean that what it does is always for the good.

Saron: I would like to drill down a little deeper and ask what’s implied by “executive function.” We need
to foster a critical perspective and always pay close attention to the narratives that emerge from the words we use. In the history of science, when there is no integrated theory, someone comes up with a term that simplifies understandi